[<] Fonctions génératrices [>] Marches aléatoires

 
Exercice 1  4943    CCP (MP)Correction  
  • (a)

    Donner le rayon de convergence de la série entière

    n0n2+n+1n!tn.

    On note S la somme de cette série entière.

  • (b)

    Rappeler le développement en série entière de la fonction exponentielle et calculer S(t) pour tout réel t convenable.

Une variable aléatoire X à valeurs dans vérifie GX(t)=λS(t) avec λ>0.

  • (c)

    Déterminer λ puis P(X=n) pour n.

  • (d)

    Rappeler les expressions de l’espérance et de la variance à l’aide de la fonction génératrice et en déduire E(X) et V(X).

Solution

  • (a)

    Par application de la règle de d’Alembert, R=+.

  • (b)

    Pour tout t

    et=n=0+1n!tn

    et donc

    S(t) =n=0+n(n-1)+2n+1n!tn
    =n=2+1(n-2)!tn+2n=1+1(n-1)!tn+n=0+1n!tn
    =(t2+2t+1)et=(t+1)2et.
  • (c)

    GX(1)=1 détermine λ=e-1/4. On en déduit

    P(X=n)=n2+n+14en!.
  • (d)

    Si GX est deux fois dérivable en 1,

    E(X)=GX(1)etV(X)=GX′′(1)+GX(1)-(GX(1))2.

    Ici, on obtient E(X)=2 et V(X)=3/2.

 
Exercice 2  4117  Correction  

Soient n, p]0;1[ et X une variable aléatoire à valeurs naturelles dont la loi est donnée par

P(X=k)=a(n+kk)pkpour tout k.

En employant la fonction génératrice de X, déterminer a et calculer l’espérance et la variance de X.

Solution

On introduit la fonction génératrice de X:

GX(t)=an!k=0+(n+k)(k+1)(pt)k.

Puisque

k=0+(n+k)(k+1)xk=dndxn(11-x)=n!(1-x)n+1

on obtient

GX(t)=a(1-pt)n+1.

Sachant GX(1)=1, on en tire la valeur de a

a=(1-p)n+1.

On peut ensuite calculer espérance et variance

E(X)=GX(1)=(n+1)p1-p et V(X)=GX′′(1)+GX(1)-GX(1)2=(n+1)p(1-p)2.
 
Exercice 3  4369  

On considère de nouveau la variable aléatoire X présentée dans le sujet 4085

Calculer la fonction génératrice de X et retrouver les valeurs de son espérance et de sa variance.

 
Exercice 4  4024  Correction  

Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ>0.

  • (a)

    Rappeler la fonction génératrice de la variable X.

  • (b)

    Exploiter celle-ci pour calculer le moment centré d’ordre 3 de la variable X.

Solution

  • (a)

    On a

    GX(t)=E(tX)=n=0+P(X=k)tk=eλ(t-1).
  • (b)

    GX(1)=E(X)=λ, GX′′(1)=E(X(X-1))=λ2 et GX(3)(1)=E(X(X-1)(X-2))=λ3.
    On en déduit

    E(X2)=λ2+λ et E(X3)=λ3+3λ2+λ

    puis

    E((X-λ)3)=E(X3)-3λE(X2)+3λ2E(X)-E(X)3=λ.
 
Exercice 5  4039  Correction  

Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ>0.

  • (a)

    Calculer

    E(X(X-1)(X-r+1)).
  • (b)

    Retrouver ce résultat par les fonctions génératrices.

Solution

  • (a)

    Par la formule de transfert

    E(X(X-1)(X-r+1))=k=r+k!(k-r)!e-λλkk!=λr.
  • (b)

    La fonction génératrice de X est

    GX(t)=E(tX)=eλ(t-1).

    Celle-ci est indéfiniment dérivable sur et

    GX(r)(t)=E(X(X-1)(X-r+1)tX)=λreλ(t-1).

    En particulier

    GX(r)(1)=E(X(X-1)(X-r+1))=λr.
 
Exercice 6  4040  Correction  

Soit X une variable aléatoire suivant une loi géométrique de paramètre p]0;1[.

  • (a)

    Calculer

    E(X(X-1)(X-r+1)).
  • (b)

    Retrouver ce résultat par les fonctions génératrices.

Solution

  • (a)

    Par la formule de transfert

    E(X(X-1)(X-r+1))=k=r+k(k-1)(k-r+1)(1-p)k-1p.

    Or

    k=r+k(k-1)(k-r+1)xk-r=drdxr(11-x)=r!(1-x)r+1

    donc

    E(X(X-1)(X-r+1))=(1-p)r-1r!pr.
  • (b)

    La fonction génératrice de X est

    GX(t)=E(tX)=pt1-(1-p)t=pp-1+p1-p1-(1-p)t.

    Celle-ci est indéfiniment dérivable sur et

    GX(r)(t)=E(X(X-1)(X-r+1)tX)=p1-pr!(1-p)r(1-(1-p)t)r+1.

    En particulier

    GX(r)(1)=E(X(X-1)(X-r+1))=r!(1-p)r-1pr.
 
Exercice 7  4027   Correction  

On considère une expérience aléatoire ayant la probabilité p>0 de réussir et 1-p d’échouer.
On répète l’expérience indépendamment jusqu’à obtention de m succès et l’on note Tm le nombre d’essais nécessaires à l’obtention de ces m succès.

  • (a)

    Reconnaître la loi de T1.

  • (b)

    Déterminer la loi de Tm dans le cas général m*.

  • (c)

    Exprimer le développement en série entière de

    1(1-t)m.
  • (d)

    Déterminer la fonction génératrice de Tm et en déduire son espérance.

Solution

  • (a)

    T1 suit une loi géométrique de paramètre p.

  • (b)

    Notons (Xn)n* la suite des variables de Bernoulli testant la réussite de chaque expérience.
    L’évènement (Tm=n) est la réunion correspond à l’évènement X1++Xn=m et Xn=1 soit encore
    X1++Xn-1=m-1 et Xn=1. Par indépendance

    P(Tm=n)=P(X1++Xn-1=m-1)P(Xn=1).

    Puisque X1++Xn-1(n-1,p) et Xn(p), on obtient

    P(Tm=n)=(n-1m-1)pm(1-p)n-m

    et écriture vaut aussi quand nm car le coefficient binomial est alors nul.

  • (c)

    En exploitant le développement connu de (1+u)α, on obtient

    1(1-t)m=n=0+(n+m-1m-1)tn pour t]-1;1[.
  • (d)

    Par définition

    GTm(t)=n=0+(n-1m-1)pm(1-p)n-mtn.

    En isolant les premiers termes nuls et en décalant l’indexation

    GTm(t)=n=0+(n+m-1m-1)(pt)m((1-p)t)n=(pt)m(1-(1-p)t)m.

    On en déduit

    E(X)=GTm(1)=mp.
 
Exercice 8  4046   

(Processus de Galton-Watson11 1 Si la variable N détermine le nombre d’individus d’une population et X le nombre de descendants que chaque individu peut engendrer, la variable S correspond à la population à la génération suivante.)

Soit (Xn)n* une suite de variables aléatoires indépendantes et identiquement distribuées selon la loi d’une variable X à valeurs dans . Soit aussi N une variable aléatoire à valeurs dans indépendantes des précédentes. On étudie S=X1++XN.

  • (a)

    Justifier que S est une variable aléatoire à valeurs naturelles.

  • (b)

    Établir GS(t)=GN(GX(t)) pour tout t de [-1;1].

  • (c)

    On suppose que les variables N et X admettent chacune une espérance finie. Établir l’identité de Wald: E(S)=E(N)E(X).

 
Exercice 9  4180     CENTRALE (MP)Correction  

Soient (Ω,𝒯,P) un espace probabilisé, X une variable aléatoire à valeurs dans , (Xn)n1 une suite de variables aléatoires i.i.d suivant la loi de X et N une variable aléatoire indépendante des Xi et à valeurs dans . Pour ωΩ, on pose

S(ω)=k=1N(ω)Xk(ω).
  • (a)

    Soient GX, GS et GN les séries génératrices de X, S et N. Montrer

    t[0;1],GS(t)=GNGX(t).
  • (b)

    On suppose que X et N possèdent une espérance. Montrer que S possède une espérance et la calculer.

  • (c)

    On suppose que X et N ont un moment d’ordre 2. Montrer que S possède un moment d’ordre 2 et calculer la variance de S.

On étudie la transmission du nom de famille au cours des générations dans une société patriarcale. On suppose que le nombre de descendants masculins d’un individu suit une loi de Poisson de paramètre λ]0;+[. On note Z0 le nombre d’individus masculins au début de l’étude, Zn le nombre de descendants à la n-ième génération. On suppose que Z0=1.

  • (d)

    Écrire une fonction Python renvoyant le nombre de descendants masculins à la n-ième génération.

  • (e)

    Fixer λ et n. Calculer une moyenne, sur un grand nombre de mesures, du nombre de descendants masculins. Comparer à E(Zn).

Solution

  • (a)

    Pour t[-1;1]

    GS(t) =m=0+P(S=m)tm
    =m=0+n=0+P(N=n,X1++Xn=m)tm

    car l’événement (S=m) est la réunion disjointe des événements (N=n,X1++Xn=m). Par indépendance puis réoganisation du calcul de la somme d’une famille sommable, il vient

    GS(t) =m=0+n=0+P(N=n)P(X1++Xn=m)tm
    =n=0+P(N=n)m=0+P(X1++Xn=m)tm
    =n=0+P(N=n)GX1++Xn(t).

    Enfin, par indépendance, GX1++Xn(t)=GX1(t)××GXn(t)=(GX(t))n et l’on conclut GS=GN(GX(t)).

  • (b)

    GN et GX sont dérivables en 1 donc aussi GNGX et alors S admet une espérance:

    E(S)=GS(1)=GX(1)×GN(GX(1))=E(X)E(N).
  • (c)

    GN et GX sont deux fois dérivables en 1 donc aussi GNGX et alors S admet un moment d’ordre 2.

    V(S) =E(S2)-E(S)2=E(S(S-1))+E(S)-E(S)2
    =GS′′(1)+GS(1)-(GS(1))2.

    Au terme des calculs,

    V(S)=E(N)V(X)+E(X)2V(N).
  • (d)

    On évite d’écrire lambda qui est un mot clé Python.

    import random as rnd
    import math
    
    def poisson(l):
        x = rnd.random()
        n = 0
        p = math.exp(-l)
        while x > p:
            x = x - p
            n = n + 1
            p = p * l/n
        return n
    
    def generation(n,l):
        Z = 1
        for k in range(n):
            S = 0
            for z in range(Z):
                S = S + poisson(l)
            Z = S
        return Z
    
  • (e)
    def esperance(N):
        n = 10
        l = 1.8
        E = 0
        for i in range(N):
            E = E + generation(n,l)
        E = E / N
        return E, l**n
    

    car E(Zn+1)=E(X)E(Zn) (car N correspond à Zn) et donc E(Zn)=λn.

[<] Fonctions génératrices [>] Marches aléatoires



Édité le 08-11-2019

Bootstrap Bootstrap 3 - LaTeXML [LOGO] - Powered by MathJax Powered by MathJax